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ANALYSIS AND MITIGATION OF NUMERICAL DISSIPATION IN

INVISCID AND VISCID COMPUTATION OF VORTEX-DOMINATED FLOWS

Osama A. Kandil

Accomplishments

In the period of February 1988 to November 1988, The Principal Investigator with the

assistance of one of his Ph.D. Students has achieved the following accomplishments:

. Publication: Kandil, O.A. and Chuang, H. A., "Unsteady Delta.Wing Flow

Computation Using An Implicit Factored Euler Scheme," AIAA 88-3649--CP,

AIAA/ASME/SIAM/APS 1st National Fluid Dynamics Congress, Cincinnati, Ohio, July

25-28, 1988, pp. 248-255. A copy of the paper is attached.

Abstract

The conservative unsteady Euler equations for the flow relative motion in the moving frame

of reference are used to solve for the steady and unsteady flows around sharp-edged delta wings.

The resulting equations are solved by using an implicit approximately-factored finite-volume

scheme. Implicit second-order and explicit second- and fourth-order dissipations are added to

the scheme. The boundary conditions are explicitly satisfied. The grid is generated by locally

using a modified Joukowski transformation in cross-flow planes at the grid chord stations. The

computational applications cover a steady flow around a delta wing whose results serve as the

initial conditions for the unsteady flow around a pitching delta wing about a large angle of attack.

The steady results are compared with the experimental data and the periodic solution is achieved

within the third cycle of oscillation.

. Journal Publication: Kandil, O. A. and Chuang, H. A., "Computation of Vortex-

Dominated Flow for a Delta Wing Undergoing Pitching Oscillation," AIAA Journal,

Vol. 28, No. 9, September 1990. A copy of the manuscript is attached.

. Publication: Wong, T. C., Kandil, O. A. and Liu, C. H., "Navier-Stokes Computations

of Separated Vortical Flows Past Prolate Spheroid at Incidence," AIAA Paper No.

89-0553, Reno, Nevada, January 9-12, 1990.

Abstract

The problem of steady incompressible viscous flow past prolate spheroids at incidence is

formulated using the unsteady incompressible thin-layer Navier-Stokes (NS) equations and the

unsteady compressible thin-layer Navier-Stokes equations. For the incompressible equations, a



certainlevel of unsteady artificial compressibility is added to the continuity equation to secure

the coupling with the momentum equations during the psuedo-time stepping. The two sets of

Navier-Stokes equations are solved using a psuedo-time stepping of the implicit flux-difference

splitting scheme on a curvilinear grid, which is generated by a transfinite grid generator. The

Baldwin and Lomax algebraic eddy viscosity model is used to model the turbulent flow. The

computational applications cover a 6:1 prolate spheroid at different angles of attack and different

Reynolds number. The results are compared with the experimental data.
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UNSTEAOY D£LrA-WING FLOW COIq_UTATION USING 88-3649.CP
AN IMPLICIT FACTORED EULER SCHEHE

Osam A Kandil* and H. Andrew Chuang**
Department of Rechanica] Engineering and Mechanics

Old Dominion University, Norfolk, VA 23529-0247

Abstract

The conservative unsteady Euler equations

for the flow relative motion in the moving frame
of reference are used to solve for the steady and
unsteady flows around sharp-edged delta wings.
The resulting equations are solved by using an
implicit approximately-factored finite-volume

scheme. Implicit second-order and explicit
second- and fourth-order dissipations are added
to the scheme. The boundary conditions are
explicitly satisfied. The grid is generated by
locally using a modified Joukowski transformation
in cross-flow planes at the grid chord stations.
The computational applications cover a steady
flow around a delta wing whose results serve as
the initial conditions for the unsteady flow

around a pitching delta wing about a large angle
of attack. The steady results are compared with

the experimental data and the periodic solution
is achieved within the third cycle of oscilla-
tion.

Introduction

-Unsteady flows around delta wings are
characterized by the existence of unsteady large-
and small-scale vortices (primary, secondary and
possible tretiary vortices), moving shock waves

with time-dependent strengths, time-dependent
vortex-core formation and breakdown (bubble and

spiral-vortex breakdown), and interaction of
shock waves with the vortical-region and the
surface-boundary-layer flows. These highly
unsteady aerodynamic loads may interact with the
wing structural response causing aeroelastic
instabilities which may restrict the aircraft
flight envelope. In Ref. 1, the status of
computational unsteady aerodynamics for aero-
elastic analysis has been discussed, and
recommendations for future code development for

separated and vortex-dominated flows are
presented.

The literature on the computational solution
and experimental data of the unsteady vortex-
dominated flows, particularly in the transonic
regime, is unfortunately very limited. This is
attributed to the complexity of the flow and its
dependence on numerous parameters, and the
substantial computational cost involved for the
flow resolution and the tlme-accurate computa-
tions.

*Professor, Associate Fellow AIAA.

**Graduate Research Assistant, Member AIAA.
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Most of the existing unsteady computational

schemes are based on the unsteady small distur-

bance (UTSD) theory 2"4, unsteady full potential

(UFP) equation 5"7, UTSD8equation with non-isen-
tropic flow corrections and UFP equation with

non-isentropic flow corrections 9. These schemes

are restricted to attached flows only. For
mildly separated flows, integral and finite-

difference boundary-layer schemes have been

coupled with potential flow schemes I0,11

The unsteady Euler equations adequately
model shock waves and their motion, entropy
increase across shocks and entropy gradient and
vorticity production and convection behind
shocks, as can be seen from Crocco's theorem and

the inviscid vorticity transport equation. More-
over, the computational solution of Euler equa-
tions adequately models separated flow from sharp

edges 12"14 For smooth-surface separation,

round-edge separation, shock-induced separation,
viscous diffusion and dissipation, vortex break-
down, flow transition and turbulence; viscous
terms must be added to Euler equations to recover
the full Navier-Stokes equations or an approxi-
mate form of these equations. Although the

process of adding the viscous terms to the
unsteady Euler solvers is simple and straight-
forward, the computational cost for high-

Reynolds-number unsteady flows is substantial and
might be prohibitive due to the need for fine
grids to adequately resolve the viscous effects.

Euler/Navier-Stokes zonal approaches 15,16

have been demonstrated to maintain the accuracy
of the Navier-Stokes solutions and in the mean-

time, alleviate to a gooO extent the computa-
tional cost of the Navier-Stokes equations.

These approaches along with fine grids embedding
in the vortical regions should be developed
further for unsteady flows.

Recently, successful time accurate solutions
of the unsteady Euler and Navier-Stokess equa-

tions have been presented for airfoils]4,17"20.

The only existing unsteady Euler solutions for
vortex-dominated flows are those of the rolling-
oscillation of a sharp-edge delta wing in a
locally conical supersonic flow around a mean
angle of attack and a zero angle of attack, which
were presented by the authors in Refs. 13 and 14.
The authors derived the unsteady Euler equations
for the flow relative motion in a moving frame of
reference, and the equations have been solved by
using an expllclt, multl-stage time stepping,
finite-volumn scheme. Periodic solutions were

achieved in the third cycle of rolling oscilla-
tion. Details of the surface pressure, cross-
flow velocity and cross-flow Math contours were
presented showing the primary vortex and wave
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shocks Formation and interaction.

In the present paper, the three-dimensional

unsteady Euler equations in a moving frame of

reference are solved by using an implicit

approximately-factored finite-volume scheme. The

unsteady airfoil computations of this scheme were

compared earlier with the experimental data of

ref. 21, which were in good agreement. The

present three-dimensional steady results are

compared with the experimental data of ref. 22

for two levels of explicit dissipation. With the

steady results serving as initial conditions for

the unsteady flow, the flow around the same delta

wing undergoing pitching oscillation about the

quarter-chord axis is solved in this paper.

Form_laLion

Starting with the conservative form of the

unsteady Euler equations for the flow absolute

motion in the space-fixed frame of reference, and

using the following relations for the substantial

and local derivatives of a scalar "a" and a

vector "A"

Oa D'a

D--t= D-'t-' (l.a)

aa _ a'a 9t " ?a (l.b)at _-T_-

DA D'A
• _xA (l.c)

Dt Dt r

aA a'A _t " VA + _xA (l.d)-_ ---T_

we obtain the conservative unsteady Euler

equations for the flow relative motion in the

moving-frame of reference. In terms of the

Cartesian coordinates x', y', z' of the moving-

frame of reference, the resulting Euler equations

are

a_r" a_ _f _r r r
--÷---÷-- +-- : _ (2)
at ' ax ' ay ' _z '

where

qr = [p, PUr ' PVr' PWr' Per]t

: [pu 2 + P , PUrhr]tr r' PUr ' PUrVr PUrWr'

= [PVr 2 + P PVrhr]tr ' PUrVr' PVr ' PVrWr'

= [pw 2 + P, PWrhr]tr r' PUrWr' PVrWr' PWr

(3)

(4)

(s)

(6)

= [0, -Patx,, Paty,, - Patz,,

P[Vr " _0 + (_xr) • ao + _0 " (at- " _XVr)

+ T/ • (_xr) + (_xr) • (_xr)]] t
r

(7)

e :e-V.V
r t

V 2 2
r Vt

: p-T_y-I-TT+2 2 (8)

h :h-_._
r t

V2 2
r Vt

: p-_ + 2 2

:9-9 :9 +_xr
t r o

_t = _ - _r

DV D'Vr
= __ .

Dt Dt '

(9)

(IO)

- -

:a ÷_x r+ 2_x_ +_x (_x r) (11)
o r

_o : _ox,_ + my,J + _oz,l(

^

: (- & sin B + O) i

÷ (_ COS 13 sin O + B COS O) .T

+ (_ cos B cos e - _ sin O) (12)

In Eqs. (I)-(12), qr is the flow vector field of

relative metion; E , F and G the inviscid
r r

fluxes of the relative motion, S a source term

due to the motion of the reference frame, p the

density, p the pressure, e and h the total energy

and total enthalpy per unit mass, V and a the

flow absolute velocity and absolute acceleration,

and ar the flow relative velocity and rela-

tlve acceleration, V and at the transformationt
velocity and transformation acceleration, V and

o

ao the translation velocity and translation

acceleration of the moving frame, _ and _ the

angular veIocit_ and angular acceleration of the

moving frame, r the position vector of a fluid

particle with respect to the moving frame, and

y is the ratio of specific heats. The pitch, yaw

and roll angles are referred to by using the

Eulerian angles a, B and e; respectivley. The

..... refers to the derivatives, time or coordi-

nates with respect to the moving frame of

reference.

Introducing the curvilinear coordinates {',

n' and _' in the moving frame of reference, which

are given by

{' : {'(x',y',z'), n' = n'(x',y',z'),
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v

_ : _'(x',y',z )

Eqs. (2)-(7) are transformed to

(13)

_ + T_- + _--_-_-+-_ - = S (14)

dr : j-1 [p, OUr, PVr, pWr' Per]t (15)

Er : j-I [PUr, PUrUr + Cx" p' PVrUr + {y" P'

' PUrhr]t_WrUr + Cz' p' (16)

i

Fr : J'I[PVr' PUrVr + nx' p' PVrVr + ny, P,

PWrV r + n_, p, PVrhr]t (17)

j-l[_Wr , ,Gr = ' PUrWr + _x' p' PVrWr + _y' P'

_WrW r ' PWrh r+ _z' P' ]t (18)

: j-l_ (19)

In Eqs. (15)-(19), j-1 is the Jacobian of

transformation and Ur, Vr and W r are the contra-

variant velocity components.

Coaq_utattonal Scheme

Equation (14) is integrated over {', n' and

{' the divergence theorem is applied to the

resulting equation. By using the implicit

approximate factorization scheme, we obtain the

following difference equation for a typical cell

(i, j, k)

H n

[_1_ + 6¢ 'An rr "T- OmE'] x

[_ + 6n,Bn- Dmn, ] x

I C n n
[_-_-r + 6 , r " Dm¢'] aqr ....

(Jat') 2 (20)

where

I+i/2,j ,k

+
I ,j+I/2,k

ri-I/2,j,k

in )
ri ,j-I/2,k

_n

I ,j,k÷l/2 1 ,j ,k-l/2

_ "n DeE,(_n)Si,j,k

Den,(q _) - Dec,(Q_! (21)

In Eqs. (20) and (21), Ar, Br, C r and H r are the

Jacobian matrices _Erl_qr, _Fr/_Qr, _Gr/_Q r and

_S/aq r, respectively; 6.,, 6 , and 6 , the three-. _ _
point central difference operators; D.... D_ ,

M _n

and D _, the implicit dissipation opera_ors' and
m_

D__,, D_ , and D_ , the explicit dissipation

operators. The expressions of the dissipation

operators are given in ref. 24. The implicit

damping coefficient is _m and the explicit

damping coefficients are ¢2 and c4. The damping

coefficients are having the same values in the

_', n' and _' directions.

The solution of Eq. (20) is obtained through

three successive sweeps in the n', _' and E';

respectively. Once A(_nr iS obtained, _÷I is

found from

= qr

The surface boundary conditions is explicitly

enforced through the normal momentum equation 24

while the farfield boundary conditions for

subsonic flows are enforced using the inflow-

outflow conditions which are based on the Rieman

invariants 24.

Coiputatto_al Results

A sharp-edged delta wing of aspect ratio,

AR, of one, at a mean angle of attack, o_n, of

20.5 ° and in a free stream Mach number, M , of

0.3 is considered for the computational

application of the implicit three-dimensional

vectorized program. The body conformed grid

consists of 80x38x48 cells in the E', n' and

_' directions, respectively; and Its size is one

root-chord ahead of the wing vertex, two root-

chords behind the trailing edge and one root-

chord radius in the cross flow planes. The outer

boundary consists of a heml-spherical surface

with its center at the wing vertex and a cylin-

drical surface with its axis coinciding with the

wing axis. The grid is generated in cross-flow

planes using a modified Joukowskl transformation

which is locally applied at the grid chord sta-

tions with exponential clustering at the wing

surface.

St e_l_ Flo_:

The implicit program is used. to solve for

the steady flow at 20.5 ° angle of attack with two

levels of numerical dissipation; a low dissipa-

tion (LD) wlth (2 = 0.05, {4 " 00.0025 and
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_m = 0.25 and a high dissipation (HD) with _2 :

0.25, E4 = 0.0025 and _m = 0.25. Figure I

shows the solutions at two chord stations of 0.52

and 0.81 on the wing. The figures from left to

right show the surface pressure coefficient

(Figures 1.1), the static pressure coefficient

contours (Figures 1.2) and the cross-flow

velocity directions (Figures 1.3). Here, we

compare the surface pressure of the Implicit-

Scheme with low dissipation with that of the

experimental data of Hummel 22. Other comparisons

are given by the authors in ref. 24.

At X'/C = 0.52, the computed surface

pressure with low dissipation is in excellent

agreement with the experimental data. The

computed static pressure contours with low dissi-

pation show higher pressue levels than those

computed contours with high dissipation, parti-

cularly in the vortical core region. With low

dissipation, the highest pressure contour is 1.6,

while with high dissipation the highest pressure

contour (at the same locatin) is 1.1. Comparison

of the computed surface pressure with high dissi-

pation with that of the experimental data (given

in ref. 24) shows that the computed peak suction

pressure is underpredicted by 18% although the

remainder of the surface pressure is in good

agreement with the experimental data.

At X'/C : 0.81, the computed surface pres-

sure with low dissipation is higher than that of

the experimental data, particularly under the

primary vortex core. The computed peak suction

pressure is about 25% higher than that of the

experimental data. Comparison of the computed

static pressure contours with low dissipation

shows higher pressure levels than those computed

contours with high dissipation, particularly in

the vortical core region. The cross flow veloci-

ties of both dissipation levels (Figures 1.3)

shovl almost identical shapes and directions.

Figure 2 shows the experimental static

pressure contours of Hummel 22 in planes

perpendicular to the wind direction (Figures

2.1), the counputed static pressure contours in

planes perpendicular to the wing surface (Figures

2.2) and the cross-flow velocity directions

(Figures 2.3). The computational results a|ong

with the experimental data are shown for two

cross flow planes in the wake; X'/C = 1.02 and

X'/C = 1.25. At X'/C = 1.02, the computed outer

contours are in excellent agreement with the

experimental contours. For the most inner static

pressure contours, the experimental data show

higher level than those of the c_nputed results.

On the other hand, the implicit results with low

dissipation show higher level than those of the

higher dissipation. Similar results are seen at

X'/C = 1.25. At this location, it is seen that

the trailing-edge vortex core is captured using

the low-dissipation implicit scheme.

The discrepancies between the experimental

data and the computed results with low dissipa-

tion level are attributed to the grid coarseness

in the vortical core and to the viscous effects

in the vortex core as well as on the wing upper

surface. The discrepancies between the computed

results with low and high dissipation are

obviously due to the low and high value_of the

explicit second-order damping coefficient.

On the VPS-32 computer of NASA Langley

Research Center, a typical steady flow case takes

1050 psuedo time stepping to reach a residual

error of 10 -3 •

Unsteady Flow (Pitching Oscillation about the

Quarter-Chord /bds):

The steady results with low dissipation

level are used as the initial conditions for

calculating the unsteady flow around the same

wing which is undergoing a pitching oscillation

about the quarter chord axis. The angle of

attack o(t) is given by

m(t) : mm + _o sin 2_M kt

where mo is the amplitude, and k is the reduced
W

frequency (k : , k _ dimensional frequency

and c _ wing chord'length). In this application

am = 20"5°' ao : 2°' fl = 0.3 and k = 3 which

corresponds to a period of 2.95 per cycle. Each

cycle of oscillation takes about 1,475 tithe steps

and the solution covers 5,000 time steps which

correspond to 3.39 cycles of oscillation. Figure

3 shows _ vz t motion at the top, which is

followed by the surface pressure variation,

static pressure contours and cross-flow velocity

in each row of figures. The numbers 1-15 on the

_-t curve and on the other figures show the

instants at which the computational results are

shown. Here, we show the computations at X'/C =

0.52 and the computed surface pressures are shown

every 200 time steps starting from the 2,20_ Lime

step, which corresponds to point I on the _-t

curve. The static pressure contours and the

cross-flow velocity directions are given at the

3,000; 4,0_0 and 5,000 time steps which corre-

spond to points 5, I0 and 15, respectively; on

the _-t curve. Comparison of the surface

pressure at points 7 and 14, corresponding to

2.31 and 3.25, cycles respectively, shows that

periodic oscillation has already been reached.

Experimental data for unsteady vortex dominated

wing flows are urgently needed for bench-mark

comparisons.

Concluding Remrks

The three-dimensional unsteady Euler

equations in a moving frame of reference are

solved by using an implicit approximately-

factored finite-volume scheme. The computational

applications cover steady low-subsonic flow

around a sharp-edged delta wing at a large angle

of attack, and unsteady low-subsonic flow around

the same wing undergoing a pitching oscillation

about the same large angle of attack. The steady

flow problem has been computed with two levels of

numerical dissipation, and the results have been

compared with each other and with the experi-

mental data. The low-dissipation results give

better agreement with the experimental data than

those of high-dissipation results. However, fine

grid embedding are needed in the vortical

regions. Moreover, the viscous terms must be

added in the vortical regions (free-shear layers)
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and in the surface boundary-layer Flow. Outside
of these regions, Euler equations are adequate
for computing the flow field. This calls for
urgent extension of the Euler/Navier-Stokes zonal

scheme 16 to this problem. The results of the

unsteady flow application show consistency, and
they show periodic solution in the third cycle of
oscillation. Although the code has been verified

previously with unsteady airfoil computation 17,
unsteady experimental data for vortex dominated

flows are urgently needed for bench-mark compari-
son. Work is underway to use the flux-difference

splitting scheme with the unsteady Euler/Navier-
Stokes zonal scheme.
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COMPUTATION OF VORTEX-DOMINATED FLOW FOR _ DELTA
WING UNDERGOING PITCHING OSCILLATION
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#Jmstract

The conservative unsteady Euler equations for the flow relative to a

moving frame of reference are used to solve for the three-dimensional steady

and unsteady flows around a sharp-edged delta wing. The resulting equations

are solved by using an implicit, approximately-factored, finite-volume

scheme. Implicit second-order and explicit second- and fourth-order

dissipations are added to the scheme. The boundary conditions are explicitly

satisfied. The grid is generated by locally using a modified Joukowski

transformation in cross-flow planes at the grid chord stations. The

computational applications cover a steady flow around a delta wing whose

results serve as the initial conditions for the unsteady flow around a

pitching delta wing at a large mean angle of attack. The steady results are

compared with the experimental data and the unsteady results are compared with

results of a flux-difference splitting scheme.

tThis paper has been presented as AIAA-88-3649-CP, Cincinnati, Ohio, 1988.
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Introduc ti on

Unsteady flows around delta wings are characterized by the existence of

unsteady large- and small-scale vortices (primary, secondary and possible

tertiary vortices), moving shock waves with time-dependent strengths, time-

dependent vortex-core formation and breakdown (bubble and spiral types of

vortex breakdown), and interaction of shock waveswith the vortical-region and

the surface-boundary-layer flows. These highly unsteady aerodynamic loads may

interact with the wing structural response causing aeroelastic instabilities

which may restrict the aircraft flight envelope. In Ref. I, the status of

computational unsteady aerodynamics for aeroelastic analysis has been

discussed, and recommendationsfor future code development for separated and

vortex-dominated flows are presented.

The literature on the computational solution and experimental data of the

unsteady vortex-dominated flows, particularly in the transonic regime, is

unfortunately very limited. This is attributed to the complexity of the flow

and its dependence on numerous parameters, and the substantial computational

cost involved for the flow resolution and the time-accurate computations.

Most of the existing unsteady computational schemes for airfoil and wing

flow applications are based on the unsteady small disturbance (UTSD) theory 2-

4, unsteady full potential (UFP) equation 5-7, UTSD theory with vorticity and

non-isentropic flow corrections $ and UFP equation with non-isentropic flow

corrections 9. These schemes are restricted to attached flows only, and hence

they cannot be used to capture vortex-dominated flows. For mildly separated

flows, integral and finite-difference boundary-layer schemes have been coupled

with potential flow schemes I0'II However, such schemes cannot be used for

massive separation.



On the other hand, the unsteady Euler equations adequately model shock

waves and their motion, entropy increase across shocks and entropy gradient

and vorticity production and convection behind shocks, as can be seen from

Crocco's theorem and the inviscid vorticity transport equation. Moreover, the

computational solution of Euler equations adequately models separated flows

from sharp edges 12-14. For smooth-surface separation, round-edge separation,

shock-induced separation, viscous diffusion and dissipation, vortex breakdown,

flow transition and turbulence; viscous terms must be added to Euler equations

to recover the full Navier-Stokes equations or an approximate form of these

equations. Although the process of adding the viscous terms to the unsteady

Euler solvers is simple and straightforward, the computational cost for high-

Reynolds-number unsteady flows is substantial and might be prohibitive due to

the need for using fine grids to adequately resolve the viscous effects.

Euler/Navier-Stokes zonal approaches 15'16 have been demonstrated to

maintain the accuracy of the Navier-Stokes solutions and in the meantime,

alleviate to a good extent the computational cost of the Navier-Stokes

equations. These approaches along with fine grid embedding in the vortical

regions should be developed further for unsteady flows.

Recently, successful time accurate solutions of the unsteady Euler and

Navier-Stokes equations have been presented for airfoils 14'17-20. The only

existing unsteady Euler solutions for vortex-dominated flows are those for the

rolling-oscillation of a sharp-edge delta wing in a locally conical supersonic

flow around a mean angle of attack and a zero angle of attack, which were

presented by the authors in Refs. 13 and 14. The authors derived the unsteady

Euler equations for the flow relative to a moving frame of reference, and the

equations have been solved by using an explicit, multi-stage Runge-Kutta time

stepping, finite-volume scheme. By casting the equations in a moving frame of



reference, we eliminated the computation of the grid motion. _4oreover, since

the equations are expressed in terms of the flow vector field relative to the

moving frame, the equations still preserve the conservation form. Periodic

solutions were achieved in the third cycle of rolling oscillation. Details of

the surface pressure, cross-flow velocity and cross-flow Mach contours were

presented showing the primary- vortex and shock-wave formation, interaction

and disappearance.

In the present paper, the three-dimensional unsteady Euler equations in a

moving frame of reference are solved by using an implicit approximately-

factored, finite-volume scheme. The resulting code has been validated through

the solution of unsteady flows around airfoils undergoing pitching oscilla-

tion17, and comparison of the computed results with the experimental data of

ref. 21. The present three-dimensional steady results are compared witn the

experimental data of ref. 22 for two levels of explicit dissipation. With the

steady results serving as initial conditions for the unsteady flow, the flow

around the same delta wing undergoing pitching oscillation about the quarter-

chord axis is solved in this paper. The results of the pitching delta wing

are compared with those obtained using the three-dimensional flux-difference

splitting scheme of ref. 20.

Formula ti on

Starting with the conservative form of the unsteady Euler equations for

the flow relative to a space-fixed frame of reference, and using the following

relations for the substantial and local derivatives of a scalar "a" and a

vector "A"
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we obtain the conservative unsteady Euler equations for the flow relative to a

moving-frame of reference. In terms of the Cartesian coordinates x', y', z'

of the moving-frame of reference, the resulting Euler equations are
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In Eqs. (i)-(12), qr is the flow vector field of relative motion; E , F and
r r

the inviscid fluxes of the relative motion, S a source term due to the
r

motion of the reference frame, p the density, p the pressure, e and h the

total energy and total enthalpy per unit mass, V and a the absolute

velocity and absolute acceleration of the flow, V and -

velocity and relative acceleration, V and
t

and transformation acceleration, V and aoo

translation acceleration of the moving frame,

ar the flow relativer

at the transformation velocity

the translation velocity and

and _ the angular velocity

and angular acceleration of the moving frame, r the position vector of i fluid

particle with respect to the moving frame, and y is the ratio of specific



heats. The pitch, yaw and roll angles are referred to by using the Eulerian

angles _, _ and E), respectivley. The ..... refers to the derivatives, time or

coordinates with respect to the moving frame of reference. Equation (2) shows

that the present formulation is in a conservation form. However, the

conservation form is not a strong one due to the existence of the source term

on the right hand side. But on the other hand, the Jacobian corresponding to

this term is not spatially differenced (see Eqs. 21 and 22) and hence the

truncation error of this term is mainly due to temporal differencing.

Introducing the curvilinear coordinates _', n' and C' in the moving

frame of reference, which are given by

_' : _'(x',y',z'), n' -- n'(x',y',z'),

4' = ¢'(x',y',z') (13)

Eqs. (2)-(7) are transformed to
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S = j-1_ (19)

In Eqs. (15)-(19), j-i is the Jacobian of transformation and Ur, Vr and Wr are

the contravariant velocity components.

Ommputational Scheme

Equation (14) is integrated over _', _' and _' and the divergence

theorem is applied to the resulting equation. By using the implicit

approximate factorization scheme, we obtain the following difference equation

for a typical cell (i, j, k)
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In Eqs. (20) and (21), Ar, Br, Cr and Hr are the Jacobian matrices _Y_r/bqr,

_Fr/_qr, _r/_qr and _)S/Sqr, respectively; 5_,, 5,_ and 5.,_the three-point

central difference operators; Dm_,, Dm , and _mK' the implicit dissipation

operators; and DeC, , Den, and De_, the explicit dissipation operators. The

expressions of the dissipation operators in the _' direction are given by

(CFL
Dm_, : Eml _j--E_-rj(aV)_, (22)

(J_'11 j_l,j,k j,k
De _, = V_, _ _ + .

Ati+1,j,k Ati ,j,k
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(24)
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_.
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(26)

* At' i (27)

At : CFL- lUrl + IVrl + IWrl + a (Iv 'l + Iv 'l +

where Ur, Vr and Wr are the contravariant components of the relative velocity.

The implicit damping coefficient is _m and the explicit damping coefficients

are _2 and c4. The damping coefficients are having the same values in the

_', _' and _' directions.

The solution of Eq. (20) is obtained through three

-n

the rl', _' and _,'; respectively. Once z_lr is obtained,

successive sweeps in

-n+1
qr is found from

-n+l -n -n
qr = qr + _r (28)



Boundary Conditions

The surface boundary condition is enforced explicitly through the normal

momentum equation

_p A A --

- p V • (V • 7 n) - p n • a (29)
_n r r t

A

where n is the unit normal of the wing surface. Also, the farfield boundary

conditions are enforced explicitly. In the present application, subsonic flow

in the farfield is considered and hence, the inflow-outflow boundary condi-

tions are based on the Riemann invariants, R and Ri, for one-dimensional

flow normal to the boundary which are given by

2 p l (30 )R : V • n (y P )i12

- ^ 2 i/2
R = V. • n + _ (y pi/p.) (31)i I y-1 l

A

where n is the unit normal of the ouler boundary of _ilecomputational regiDn

and the subscripts _ and i refer to the farfi_ld conditions and the values

extrapolated from the interior cells at tileboundary, respectively. Thus, the

inflow boundary conditions are given by

^ I
(V • n)b : _ (R_ + R.)I (32.a)

i [y 1 - Rol]2(P/P)b : -y -- (Ri
(32.b)

(P/PY)b = (P/PY)_
(32.c)

A ^

(V • t)b : (V • t) (32.d)

^

where b refers to the boundary and t is a unit vector tangential to the

boundary. For the out-flow boundary conditions, the subscript ® in Eqs.

(32.c) and (32.d) is replaced by the subscript i. Equations (32.a) and (32.b)
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give a complete definition of the flow at subsonic boundaries. Symmetric flow

conditions are used at the plane of symmetry for the present application.

Computational Resul ts

A sharp-edged delta wing of aspect ratio, AR, of one, at a mean angle of

attack, _m' of 20.5 ° and in a free stream Mach number, Ms, of 0.3 is

considered for the computational application of the implicit three-dimensional

vectorized program. The body conformed grid consists of 80x38x48 cells in

the _', _' and _' directions, respectively; and its size is one root-chord

ahead of the wing vertex, two root-chords behind t_e trailing edge and one

root-chord radius in the cross flow planes. The size of the computational

domain has been determined through numerical experiments, where the maximum

absolute value of the difference of the pressure coefficient did not exceed

0.5% from that of a computational domain which has double the present

computational size. The small computational domain is used because of the

limited available computational resources. The outer boundary consists of a

hemi-spherical surface with its center at the wing vertex and a cylindrical

surface with its axis coinciding with the wing axis. The grid is generated in

cross-flow planes using a modified Joukowski transformation which is locally

applied at the grid chord stations with exponential clustering at the wing

surface.

Steady Flow:

The implicit program is used to solve for the steady flow at 20.5 ° angle

of attack with two levels of numerical dissipation; a low dissipation (LD)

with c2 = 0.05, _4 = 00.0025 and _m = 0.25 and a high dissipation (HD)

with _2 = 0.25, c4 = 0.0025 and _m = 0.25. As a general principle, the

dissipation level in a computational scheme must be as low as possible. But
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it must be enough to obtain a stable solution. Although we are dealing with a

low subsonic low, where shocks do not exist, second-order dissipation terms

are required due to the large gradients in the vortical region. The purpose

of this numerical experiment is to determine a low dissipation level, which

gives a stable solution also. Figures I and 2 show the solutions at two chord

stations of 0.52 and 0.81 on the wing, respectively. The figures from left to

right show the surface pressure coefficient (Figures 1.1 and 2.1), the static

pressure coefficient contours (Figures 1.2 and 2.2) and the cross-flow

velocity directions (Figures 1.3 and 2.3). Here, we compare the surface

pressure of the Implicit-Scheme with low dissipation with that of the

experimental data of Hummel 22. Other comparisons are given by the authors in

ref. 24.

In Figure I, the computed surface pressure with low dissipation is i_

excellent agreement with the experimental data. The computed static pressure

contours with low dissipation si_:w hijher pressure level; tha_ those computed

contours with high dissipation, particularly in z:;e w'_tic_] core region.

With low dissipation, the highest pressure contour is 1.6, while with high

dissipation the highest pressure contour (at the same location) is 1.1. The

cross-flow velocities of both dissipation levels show almost identical shapes

and directions. Comparison of the computed surface pressure with high

dissipation with that of the experimental data (given in ref. 24) shows that

the computed peak suction pressure is underpredicted by 18% although the

remainder of the surface pressure is in good agreement with the experimental

data.

In Figure 2, the computed surface pressure with low dissipation is higher

than that of the experimental data, particularly under the primary vortex

core. It should be noted here that the experimental data of Hummel shown in
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Fig. 2.1 is the average of his data at X'/C = 0.7 and 0.9 in ref 22. The

computed peak suction pressure is about 25% higher than that of the

experimental data. Comparison of the computed static pressure contours with

low dissipation shows higher pressure levels than those computed contours wit_

high dissipation, particularly in the vortical core region, with low dissipa-

tion, the highest pressure contour is 1.7, while with high dissipation the

highest pressure contour is 1.2. The cross flow velocities of both

dissipation levels show almost identical shapes and directions.

Figures 3 and 4 shows the experimental static pressure-coefficient

contours of Hummel 22 in planes perpendicular to the wind direction (Figures

3.1 and 4.1), the computed static pressure-coefficient contours in planes

perpendicular to the wing surface (Figures 3.2 and 4.2) and the cross-flow

velocity directions (Figures _.3 and 4.3), The computational results along

w_th the experimental data are shown for two cross-flow planes in the wake;

X'/C = 1.02 and X'/C : 1.25. In Figure 3, the computed static pressure

contours of the outer vortex-core region are in excellent agreement with the

experimental contours. For the most inner static pressure contours (levels

higher than 0.3), the experimental data show higher level than those of the

computed results. On the other hand, the results of static pressure contours

of the implicit scheme wit_ low dissipation show higher pressure levels than

those with the high dissipation. Similar results are seen at X'/C = 1.25

(Figure 4). At this location, it is seen that the outer contour of the

trailing-edge vortex core is captured using the low-dissipation implicit

scheme (contour level of 0.4). The cross-flow velocities at X'/C = 1.25 also

show that the trailing-edge vortex core has been captured.

The discrepancies between the experimental data and the computed results

with low dissipation level are attributed to the grid coarseness in the
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vortical core and more important to the viscous effects in the vortex core as

well as on the wing upper surface. The discrepancies between the computed

results with low and high dissipation are obviously due to the low and high

value of the explicit second-order damping coefficient.

On the VPS-32 computer of NASA Langley Research Center, the CPU time is

40 _ sec. per grid point per time step and a typical steady flow case takes

1050 psuedo time stepping to reach a residual error of 10-3 .

Unsteady Flow (Pitching Oscillation about the Quarter-Chord Axis):

The steady results with low dissipation level, best level for a stable

solution, are used as the initial conditions for calculating the unsteady flow

around the same wing which is undergoing a pitching oscillation about the

quarter-chord axis. The angle of attack _(t) is given by

+ _ sin 2v_yM kt (33)_(t) = am o

k C *

where so is the amplitude, and k is the reduced frequency (k - 2U ' k -

dimensional frequency and c ---wing chord length) In this apD1icatioq _ =
• m

o

20.5 °, so 2 , Ms = 0.3 and k 3 which corresponds to a period of 2.95 per

cycle. Each cycle of oscillation takes about 1,475 time steps and the solu-

tion covers 5,000 time steps which correspond to 3.39 cycles of oscillation.

Figure 5 shows _ vz t motion at the top, which is followed by the

surface pressure variation, static pressure contours and cross-flow velocity

in each row of figures. The numbers 1-15 on the _-t curve and on the other

figures indicate the instants at which the computational results are shown.

Here, we show the co_aputations at the chord station X'/C = 0.52 and the

computed surface pressures are shown every 200 time steps starting from the

2,200 time step, which corresponds to point 1 on the o_t curve. The static



pressure contours and the cross-flow velocity directions are given at the

3,000; 4,000 and 5,000 ti_ne steps which correspond to points 5, 10 and 15,

respectively; on the _-t curve. Comparison of the surface pressure at

points 7 and 14, corresponding to 2.31 and 3.25, cycles respectively, shows

that periodic oscillation has already been reached.

Considering the time-history of the surface pressures, which are

indicated by the numbers 1-5, 6-10 and 11-15, the variation of the surface

pressure and the motion of the primary vortex are predicted as the wing

pitching motion (_ vz t curve) is progressing. For example, the curves i-5

show that as the angle of attack increases from instant 1 to instant 2, the

peak suction pressure increases and the primary vortex moves outboard in the

spanwise direction. This is physically expected since the pri_nary vortex

strength increases. As the angle of attack increases from instant 2 to instant

3, the peak suction pressures reaches a maximum value and decreases indicating

that the peak suction pressure is leading the wing motion. As the angle of

attack decreases from instant 3 to instant 5, the peak suction pressure

decreases and the primary vortex moves inboard in the spanwise direction.

On the surface pressure curves, we also show comparisons at selected

instants with the computations of Rumsey 25. Rumsey's computations are

produced using a three-dimensional, implicit, flux-difference splitting

program, which is known as "CFL3D". The results are computed by using our

grid which is used to compute our results. The results are in good agreement

and hence the comparison adds confidence to the computational results.

Experimental data for the unsteady vortex-dominated wing flows are urgently

needed for bench-mark comparisons. However, it is emphasized here that our

present scheme and code have been validated earlier 17 for unsteady flows

around pitching airfoils using available experimental data. 21
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Concluding Remarks

The three-dimensional unsteady Euler equations in a moving fra_ne of

reference are solved by using an implicit approxi_nately-factored finite-volume

scheme. The computational applications cover steady low-subsonic flow arouna

a sharp-edged delta wing at a large angle of attack, and unsteady low-subsonic

flow around the same wing undergoing a pitching oscillation about the same

large angle of attack. The unsteady application presents pioneering results

for the first time that we know of. The steady flow problem has been computed

with two levels of numerical dissipation, and the results have been compared

with each other and with the experimental data. The low-dissipation results

give better agreement with the experimental data than those of high-

dissipation results. However, fine grid embedding are needed in the vortical

regions. Moreover, the viscous terms must be added for accurate computations

of the vortex-core regions (free-shear layers) and for the surface boundary-

layer flow computations as well. Outside of these regions, Euler equations

are adequate for computing the flow field. This calls for urgent extension of

r

the Euler/Navier-Stokes zonal scheme _° to this problem. The results of the

unsteady flow application show consistency, and they show periodic solution in

the third cycle of oscillation. The present unsteady results have been

compared with those of the flux-difference splitting scheme, and they are in

good agreement. Although the code has also been verified previously with

unsteady airfoil computation 17 , unsteady experimental data for vortex

dominated flows are urgently needed for bench-mark comparison.
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AbsCract

The problem of steady incompressible viscous
flow past prolate spheroids at incidence is

Formulated using the unsteady incompressible
thin-layer Navier-Stokes (NS) equations and the
unsteady compressible thin-layer Navier-Stokes
equations, For the incompressible equations, a

certain level of unsteady artificial compressi-
bility is added to the continuity equation to
secure the coup]ing with the momentum equations

during the psuedo-time stepping. The two sets of
Navier-Stokes equations are solved using a
psuedo-time stepping of the implicit flux-
difference splitting scheme on a curvilinear
grid, which is generated by a transfinite grid

generator. The Baldwin and Lomax algebraic eddy
viscosity model is used to model the turbulent
flow. The computational applications cover a 6:1

prolate spheroid at different angles of attack
and different Reynolds number. The results are
compared with the experimental data.

Introduction

The f_ow about slender bodies over a wide

range of angles of attack is characterized by the

presence of large scale vortices on the leeward
side of the body as a result of the surface flow
separations. As the angle of attack changes from

low to very nigh values, the three-dimensional
boundary-layer flow changes from an attached and
vortex-free flow to a separated and vortex-

dominated flow. At moderate to high angles of
attack, the ?low separates on the leeward side of
body forming two symmetric vortices, which in
turn cause secondary and possible tertiary
vortices. At higher angles of attack, asymmetric

steady or unsteady vortex flow develops and
unfavorable changes occur in the force and moment
characteristics. For additional details, the

reader is referredlto a recent survey paper by
Newsome and Kandil , which covers the physical
aspects and the numerical simulation of

vortical flows past slender bodies and highly
swept wings over a wide range of angle of attack
and Mach number.

*Graduate Research Assistant, Department of
I_chanical Engineering and Mechanics, Nmber

_AIAA.
Professor, DepartJent of Mechanical Engineer-

t.ting and I_chanics, Associate Fellow AIAA.
Group Leader, Analytical Nethods Branch,
Senior Nmber AIAA,
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The present problem has been considered

computationally 2-13 and experimentally 14"17 by

several investigators due to its significance to
aircraft and missiles applications. In particu-
lar, the problem of incompressible flow past
prolate spheroids over a wide range of angles of
attack has been considered for computational

simulation by several investigators 2,4'6"8'I0"12

due to the existence of detailed experimental

data 14"17. Three-dimensional integral _boundary_

layer equations have been used by Stock _ and Tai °
to solve for the flow around slender porlate

spheroids at incidence. Ragab 4 has used the

three-dimensional incompressible boundary-layer
equations on a non-orthogonal coordinate system
to solve for laminar, transitional and turbulent

flows past a 6:1 ellipsoid of revolution at

various incidences. In a recent paper, Ragab 8

coupled the boundaryolayer equations with an
inhomogeneous form of Euler equations to effect a
mechanism of vorticity generation. The method

was applied to the turbulent flow past a 6:1
prolate spheroid at incidence. Boundary layer-
equations have also been used by Yanta and

Wardlaw 3, Jettmar and Kordulla 5 and Patel and

Break 7 .

Newsome and Adams g _seo the MacCor_ack's

explicit scheme to solve f_r the vortical flow
over elliptical body _lssile using the unsteady

compressible thin-layer Navier-Stokes equations.
No skin-friction coefficient calculation or

comparison was shown. Hartwich and Hall 13 solved
for the vortical flow over a tangent-ogive

cylinder using an implicit flux-difference
splitting scheme for the unsteady incompressible
thin-layer Navier-Stokes equations. The computer
program used is called "VOR3D[" -- the same

program we used in the present paper For the
incompressible Navier-Stokes equations. Again,
no skin friction calculation or comparison was
shown in their paper.

Pan and Pulliam lO used the implicit factori-

zation scheme to solve the compressible thin-

layer Reynolds-averaged Navier-Stokes equations
for the incompressible flow over a 6:1-prolate
spheroid at 10° tangle of attack, 0.029 Mach
number and 1.6xI0 ° Reynolds number based on the

ellipsoid length. The results were compared with

the experimental data of Meier, et. a115,17 and

the sting-support of the body in the experiments
was not modeled in the computational simulation.

Moreover, geometrical singular lines were present

along the body axis due to the grid used. The
computations covered a laminar flow and a turbu-
lent flow triggered at a quarter of the body

length from the body nose where Baldwin and Lomax
algebraic eddy viscosity model was used.
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v :--R.J [0, ®I u..+ _2_x' _I v_

e

* *2 ;y' _I w; ÷ _2 _z' *I [½ (u2 ÷ v2 + w2)_

_TTTrrF(a-)_], ®2wit (11)

In Eqs. (8)-(i0), the pressure is related to the

total energy per unit mass, e, the kinetic energy

Qer unit _ass and the density by the ideal gas
equation

P = CY-l)o [e - _ (u2 + v2 + w2)] (12)

In Eqs. (2)-(ii), the contravariant components of
the velocity; U, V, W, the metric functions

and ¢2 and the Jacobian of transformation, J, ar_
given by

U : _x u + _yV _ _zw (13)

V : _X _ + qyV + _zW (14)

W : _x u + _yV + _z w (15)

2 K2 2
®I : _x + y + _z (16)

: rr

y
(17)

-I
J : x_ (y_ z% - y_ zn) + xn(y C z{ - y{ z_)

+ x_(y_ z n - yn z¢) (£8)

In Eqs. (2)-(5), a certain level of aritificial

compressibility is added to the continuity equa-

through the time dependent term _t (P/fl)tion

with constant B. The purpose of this term is to
re-couple the continuity equation with the momen-

tum equation producing a parabolic set of partial
differential equations in time during the psuedo-
time marching. Once steady flow solution is
reached, the artificial compressibility term

disappars. The incompressible equations are
nondimensionalized using the reference parameters

of L, V®, L/V®, p® and _® for the length,
velocity, time, density and molecular viscosity,
respectively. For the compressible equations,

the reference parameters are L, a , L/a., p.
and _. for the length, velocity, time, density
and molecular viscosity, respectively. For the
two sets of equations, the Reynolds number is

defined as Re = p® V.X/_.

Turbulence Node1|ng:

For turbulent modeling, the Navier-Stokes
equations are transformed to the Reynolds-

averaged equations by replacing the coefficient
of molecular viscosity, _, and the coefficient of

thermal conductivity (in the case of compressible
Navier-Stokes equations) k with

_e : " * _t : ,_!1 + _' ) (19)

Cp _t Pr
ke = k + kt = _ £ * _r )

r rt

(20)

where _e is the effective viscosity, ke the

effective thermal conductivity, _t the turbulent

viscosity, Pr the laminar Prandtl number, Prt the

turbulent Prandtl number and Cp the specific _eat
under constant pressure. The turbulent viscosity

_t is obtained by using t_e two-layer algebraic
eddy viscosity model which was first developed _y

Cebeci 19 for the boundary-layer equations and

modified later by Baldwin and Lomax 20 for t_e

Navier-Stokes equations. The turbulent viscosity
in this model is given by

_t : {(_t)i r ( rc

(_t)O rc > r

(21)

where r is the normal distance from the body
surface (for the prolate spheroid it is in the
direction of a ray from the axis) and r. the

smallest value of r at which the inner-layer

turbulent _iscosity (p:)# is equal to the outer-

layer turbulent viscosity (,_t)o. For the inner
layer, the turbulent viscosity is calculated by
using the Van Driest algebraic formula

("t)i : p _z i,_1 ,22)

where the mixing length E is given by

: k r [i - exp (- r+/A +] (23)

where k is the yon Karman constant, A+ is a

damping constant and r+ is given by

r+ : r (Pw _w)i/2/_w (2_)

The subscript w refers to the body surface, In

Eq. (22), lwl is modulus of vorticity which is
given by

" " x + (vz - Wy)

+ (wx - Uz)211/2 (25)



6_ = [( )i+llZ ( )i-11Z]IA{ (35)

and 6 and 3k are defined similarly. The
invisci_ ?]uxes En, Fn and Gn at the interfaces

i ; i/2, j _ i/2 and k _ i/2 separate the nega-
tive and positive waves and hence they can be

written as the solution to a Riemann problem in
the Form

En En n n T+i/2)ni+i/2 = i ÷ (_ E;+1/2) = Ei+ I - (A E

(36)

n Fn
Similar expressions are used for Ei.i/2, j±i/2

and G_ . ^ Following Roe' scheme_ we
e_/_" s , rewrite

(_ _i±l/2_ [similarly for (_ F;el/2 )n and

(aGkel/2) ] as

a ; )n _ n Qn( Ei±112 : e (Aiel/2) 5i±ii2 (37)

Qn + Qn

(AT+wz)n: A+n ( i 2 i+l) (38)

Using a similarity transformation, the matrices
A, B and C are split. For matrix A, the split-

ting is given by

A : R A L : R [A+ - A'] L : A÷ - A- (3g)

where &'+ = (E _: IAj)/2are diagonal matrices of
eigenvalues, R and L are the right and left
eigenvector matrices of A. Using Eqs. (35)
(39) into Eq. (34), we obtain

[I/Ji,j, k At) + (A+i_i/2 8i.i/2

- A;+i/2 8i+I/2) + (Bj.I/2 8j-I/2

C ÷B;*l/2 ai*l/2) ÷ ( k-1/e 8k-lie

- Ck+i/2 8k+I/2 )In AQn : _ [(AT.I/2 8i.i/2

AT÷I/28i,z/2)+ (B_.z/28j-I/2

C ÷
" Bi+i/2 8j+I/2) + ( k-1/2 8k-I/2

. C_+I12 6k+i/2)]n Qn (_0)

Since the scheme of Eq. (40) is highly
dissipative, a high resolution scheme is used to
enhance the scheme accuracy. For one-dimensional
equation of Eq. (¢0), the high resolution scheme
gives

[I/(Ji,j, k At) + (AT.I/z6i_ii 2

. Ai+i/2 6i+i/2)]n _Qn

: {Ri+i/2 AT÷I/2 ZI - o._ _:_+i

. _)] Li+ }n 6 nI/2 i+i/2 q

" {Ri-1/2 _i-I/2 [I + 0.5 (@i

. ¢+ Qni.i)] Li_i/2}n 6i_i/2

where

and

(al)

ce . _ TVD limiters : Max [0, min
m,!

(1, re .
m,1' 2rm,i_l)] (42-b)

n

re I (6i'I12 wm)±1 n

m,i = 5i+i/2 w_" for 6i_i/2 wm * 0

0 for 5i±i/2 w_ : 0

where

(42-c)

w : LQ (¢2-d)

The viscous flux Gv is centrally differenced,

Thus, for the thin-layer Navier-Stokes equations,
the difference equations becomes

[I/(Ji,j, k at) + A+i-I/2 6i-I/2 " A_+I/2 5i+i/2

÷

+ Bj.II 2 8j-I/2 - Bi÷112 6j+I/2

+ (C+ + Z)k.i/2 8k-i12

(C" + Z)k+112 6k+i12 ]n AQn : - RES (Qn) (43)

where Z is the Jacobian matrix corresponding to

the viscous flux Gv, and RES (Qn) is the discrete

representation of the spatial derivatives in Eq.

(I), evaluated at n with the high resolution
scheme applied to the inviscid fluxes, Equation
(43) is solved by using a symmetric, planar
Gauss-Seidel relaxation in the {-direction and

approximate factorization in the n and _ direc-

tions. This factors Eqs (43) in the form

$



windward angle range B = 0 - 50 °. This is
attributed to the fully turbulent flow assumption

of the como Jt_ions while in the experimental
case the flow _s laminar to transional. Beyond

this angle, the CFL3D results are in excellent

agreement wish the experimental data. The
results _f the VOR30[ are unacceptable. Finally,

we show a comparison of the surface pressure and
skin friction coefficient in the axial vertical

plane. The Cp results of the two codes are close

while the Cf results are substantiaT?y different.

The CFL3D code took 3000 time steps to
reduce the residual error by four orders of
magnitude while the VOR3D[ code took 400 time

steps to reduce the residual error by two orders
of magnitude.

2. Fixed Transitional Flow (X/L - 0.2).

Re - 7.7xi06, m = 10":

Here, the turbulent model is turned on at
the axial location X/L = 0.2. Figures 10-14

fuTly cover this case. In Fig. 10, we show the
cross-flow velocity vectors in the cross-flow
planes which are computed by the CFL3D. It is

seen that the flow separation is very small in
the forward planes, while in the rearward planes

it grows larger. Figure ii shows a comparison of
the computed surface pressure by CFLBD and VOR3DI
in the same three cross-flow planes. The results
are in good agreement. In Fig. 12, the corre-

sponding computed skin-friction coefficient by
CFL3DI and VOR3DI along with the experimental
data are presented. Again CFL3D results are in
good agreement with the experimental data while
those of the VOR3DI show substantial discrepan-
cies in the windward side.

Figure 13 shows a comparison of the computed

surface pressure and skin friction in the axial
plane. While the computed surface pressure of
CFL3D and VOR3D[ are in good agreement, the
computed skin friction coefficient show substan-
tial differences.

Figure 14 shows a comparison of the conver-
gence history of CFL3D and VOR3DI. It is seen
that the CFL3D takes 6000 time steps to reduce

the residual error by four orders of magnitude
(which is twice the number of time steps needed
for the turbulent flow case). The VOR3DI still
takes 400 time steps to reduce the residual error

by two orders of magnitude.

3. t._uutnar Flow Case, Re - 1.6x10 6, • -10°:

The results of this case is covered in Figs.

15-17. Here, we only consider the results of
CFL3D which are shown after 10,000 time steps.
In Fig. 15, we show a comparison of the computed
skin-frlction coefficient with those of the

experimental data at six cross-flow planes. It
is seen that the resuTts are in good agreement

with the experimental data in the e range of 0° -
150 in the forward part of the body and in the
e range of 0 - I15 ° in the rear part of the
body. In the remainder range of of Q, the
computed results are substantially different from

the experimental data. This is attributed to the
flow transition from laminar to turbulent in the

region of separated flow, which has not been

accounted for in the computational simulation.
It should be pointed out here that the skin-
Friction results of this c_e obtained here in

this paper, after I0,000 iterations, are a little

different from those obtai,ed bX the same code fn
Ref. Ii, where 6,000 iterat ons have been used.

It is obvious from Fig. 17 that the residual
error fs still coverg_ng _ _';e _0,000 iteration

step after it showed constant residual error in
the range of 5,000-6,000 iterations. Figure 16

shows good agreement of the surface pressure in
the axial vertical plane with that af
experimental data. The computed skin friction in
the leeward side shows substantial difference

with the experimental data.

Concluding Remarks

The problem of steady incompressible viscous
flow past a 6:1-prolate spheroid at incidence has

been solved using two sets of the Navier-Stokes
equations; an incompressible set and a compress-
ible set. The computational scheme used for the
two sets _s the implicit flux-difference split-

ting scheme. The incompressible set is solved
using a computer code known as "VOR3D[" and the
compressible set is solved using a computer code
known as "CFL3D". The compressible code has been

applied to three test cases; a fully turbulent
flow case, a fixed transition flow case and a
laminar flow case, while the incompressible code

has been applied to the first two cases. The
predicted results of the compressible code are in

good agreement with the experimental data while
those of the incompressible code are unacceptable

with the exception of the surface pressure. For
the high-angle-of-attack turbulent flow case, the
incompressible code predicts small primary and
secondary vortices which are c?oser to the body

with larger azimuthal angles than those of the
experimental data.

The compressible code, however, takes large

number of time steps to converge. The number of
time steps are inversely proportional to the
Reynolds number. On the other hand, the incom-
pressible code takes small number of time steps
to converge. Additional work is needed to modify
the incompressible flow code for better predic-

tion of the viscous effects; e.g., skin-friction
coefficient, details of the primary vortex core
and the secondary vortex. Perhaps one should
switch the upwind flux-difference splitting
scheme to central differencing as the residual

drops down to order of 10.2 , since the
incompressible equations then are dominantly

elliptic. Obviously, one also need better
transitional and turbulent models for this

problem than the simple minded approach of

switching on the turbulent model at a prescribed
position. It should be also recalled that some
of the constants of the two-layer, algebraic
model of Balwin and Lomax have been obtained from

matching its results with transonic Flow results
-- a point which needs further investigation.

Acknowledgement

This research work has been supported by

NASA Langley Research Center under grant number
NASI-18584-O8. The authors would like to thank
Dr. J. L. Thomas for providing a copy of the



-5.33, 633 6.33, 6.33

Figure 1. Typical Trsasfinite Grid, 75 × 49 × 49
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